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Abstract 31	

The focus of this study is on the estimation of snow microphysical properties and the associated 32	

bulk parameters such as snow water content and water equivalent snowfall rate for Ku- and Ka-33	

band dual-frequency radar. This is done by exploring a suitable scattering model and the proper 34	

particle size distribution (PSD) assumption that accurately represent, in the electromagnetic 35	

domain, the micro/macro-physical properties of snow. The scattering databases computed from 36	

simulated aggregates for small to moderate particle sizes are combined with a simple scattering 37	

model for large particle sizes to characterize snow scattering properties over the full range of 38	

particle sizes. With use of the single scattering results, the snow retrieval look-up tables can be 39	

formed in a way that directly links the Ku- and Ka-band radar reflectivities to snow water 40	

content and equivalent snowfall rate without use of the derived PSD parameters. A sensitivity 41	

study of the retrieval results to the PSD and scattering models is performed to better understand 42	

the dual-wavelength retrieval uncertainties. To aid in the development of the Ku- and Ka-band 43	

dual-wavelength radar technique and to further evaluate its performance, self-consistency tests 44	

are conducted using measurements of the snow PSD and fall velocity acquired from the Snow 45	

Video Imager/Particle Image Probe (SVI/PIP) during the winter of 2014 in the NASA Wallops 46	

flight facility site in Wallops Island, Virginia.   47	

  48	
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1   Introduction 49	
 50	
The Global Precipitation Measurement (GPM) core satellite, a joint Earth-observing mission 51	

between the National Aeronautics and Space Administration (NASA) and the Japan Aerospace 52	

Exploration Agency (JAXA), was successfully launched into orbit on 27 February of 2014 from 53	

Japan (Hou et al. 2008 and 2014).  One of the goals of the Dual-frequency Precipitation Radar 54	

(DPR) aboard the GPM satellite is to provide measurements and estimates of snow precipitation 55	

rate and water content for mid- and high-latitude regions.  This is usually done by estimating 56	

parameters of snow particle size distribution (PSD) that are often modeled by an analytical 57	

function, such as the exponential, gamma or lognormal distribution, with two or three unknown 58	

parameters (Gorgucci et al. 2000 and 2002; Bringi et al. 2002). The inability of the modeled PSD 59	

to represent actual snow spectra and to characterize their intrinsic variations in time and space 60	

can lead to errors in the estimates of precipitation rate obtained from the DPR. Additionally, 61	

uncertainties associated with scattering computations of snow aggregates also affect the accuracy 62	

of the dual-wavelength radar retrieval of snow arising from the complex shape and structure of 63	

snow aggregates and the corresponding variability in the scattering parameters. Therefore, 64	

understanding the uncertainties in snow precipitation estimation that depend on PSD 65	

parameterizations and scattering models of individual particles is important in evaluating the 66	

overall performance of DPR retrieval algorithms and in gaining insight into ways to improve the 67	

algorithms.  68	

 69	

Several studies have been carried out using dual-frequency radar for the retrieval of precipitating 70	

ice/snow parameters from the ground (Matrosov 1998; Szyrmer and Zawadzki 2014) and from 71	

airborne radar measurements (Liao et al. 2005, 2008; Heymsfield et al. 2005; Wang et al. 2005; 72	
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Matrosov et al. 2005). Although various combinations of frequencies were used in these studies, 73	

a common feature is that at least one of the radar frequencies operates in the non-Rayleigh 74	

regime to ensure a measurable difference in the reflectivities.  It is this differential reflectivity 75	

that can be related to a characteristic size parameter of the snow particle distribution.   Because 76	

of uncertainties in the snow microphysics arising from the natural variability of the particle 77	

density, shape, and orientation and also because of uncertainties associated with the particle 78	

backscattering cross section and terminal fall velocity as well as the natural variability in PSDs, 79	

it is important to assess the errors in the model and their impacts on the retrievals.  80	

 81	

The emphasis of this study is on the estimation of snow microphysical properties and the 82	

associated bulk parameters such as snow water content and water equivalent snowfall rate.  As 83	

indicated earlier, one of the challenges in the radar retrieval of snow is to characterize the 84	

variability of the snow PSD and to efficiently compute scattering properties of the snowflakes 85	

over the full range of sizes. The aim of our study is to explore a suitable scattering model and an 86	

appropriate PSD that accurately represents, in the electromagnetic domain, the micro/macro-87	

physical properties of snow.  88	

 89	

Although several scattering databases are available, which provide the scattering properties of 90	

snow aggregates (Liu 2004 and 2008; Nowell et al. 2013; Kuo et al. 2016), they are often limited 91	

to small-to-moderate particle sizes for a limited set of frequencies.  These limitations arise not 92	

only because of the magnitude of the computational burden but also because of the convergence 93	

properties of the numerical solution. To develop an operational-type radar algorithm for the DPR 94	

snow retrieval, it is desirable to have a scattering model that provides efficient computation at an 95	
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arbitrary frequency over a large range of particle sizes.  Comparisons of the scattering results 96	

between simple and more complicated snow models indicate that the scattering properties of 97	

aggregates at the DPR frequencies are fairly well reproduced by randomly-oriented ellipsoidal 98	

particles if the effective mass density of snow is constant with size (Liao et al. 2013). By taking 99	

advantage of both developed scattering databases and simple scattering models, we attempt to 100	

employ the scattering results of the aggregates from the scattering database for small to moderate 101	

particle sizes and use the results from the simple scattering models for large particles to cover the 102	

full range of particle sizes for characterizing snow scattering properties at Ku- and Ka-band. 103	

 104	

One of the DPR algorithms for snow retrieval employs a fixed-snow-density spherical model for 105	

computations of the Ku- and Ka-band radar backscattering and extinction cross sections using 106	

the assumption of an exponential PSD (Seto et al. 2013). To improve snow retrieval accuracy, 107	

we will investigate retrieval uncertainties associated with the PSD and the particle scattering 108	

models, and introduce new forms of the retrieval look-up tables that directly link DPR Ku- and 109	

Ka-band radar reflectivities to snow water content and snowfall rate without the use of derived 110	

PSD parameters. Newly formed look-up tables provide an effective means not only for snow 111	

retrieval but for analysis of the retrieval uncertainties associated with the PSD model and the 112	

particle scattering models. In order to check the consistency of the snow retrievals, 113	

measurements of the snow PSD and fall velocity acquired from the Snow Video Imager/Particle 114	

Image Probe (SVI/PIP) are used (Newman et al. 2009). It is believed that a collection of long-115	

term PSD data, fall velocities and information on particle mass spectra will provide a strong 116	

basis for evaluating the performance of the DPR Ku- and Ka-band techniques. 117	

 118	
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This article is organized as follows. Methods for snow retrieval are described in Section 2, and 119	

measurements of the PSD are discussed in Section 3, followed by remarks and a summary in 120	

Section 4. 121	

 122	
2   Technical Approach and Methodology 123	
 124	

Understanding the retrieval errors associated with the snow particle size/mass distributions 125	

models and particle scattering models employed by the DPR algorithms is important for the 126	

evaluation of algorithm performance.  The study also provides insight into which of the models 127	

yield the most accurate DPR estimates of snow. Proper selection of the PSD and scattering 128	

models can improve the overall performance of the DPR profiling algorithm. What follows are 129	

discussions of snow scattering models and the parameterization of the particle size spectra and 130	

how these models affect the radar retrievals.   131	

 132	

2.1 Single scattering model of snow aggregates 133	

	134	

Several simulated aggregate models have been developed using the pristine ice crystal habits 135	

found in nature as the basic elements from which the aggregates are constructed (Draine and 136	

Flatau 1994; Liu 2004 and 2008; Weinman and Kim 2007; Petty and Huang 2010; Botta et al. 137	

2010 and 2011; Nowell et al. 2013; Kuo et al. 2016). For these particles, a numerical scheme is 138	

required to compute the scattered fields. Although these numerical computations are useful, they 139	

are time consuming, and are often limited to small-to-moderate particle sizes for a limited set of 140	

frequencies. A few scattering databases derived from simulated aggregates are available (Nowell 141	

et al. 2013; Kuo et al. 2016), but the maximum equivalent ice diameter is limited to around 2.5-3 142	

mm which is not large enough to cover entire particle size range. 143	
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 144	

To account for the scattering contribution from the entire particle size range, the current DPR 145	

algorithms adopt a simple scattering model, namely, the ice-air mixed spheres with a fixed snow 146	

density of 0.1 g/cm3 for all particle sizes (Seto et al. 2013). To check the validity and accuracy of 147	

the simple geometric scattering model, a study was carried out by Liao et al. (2013) in which 148	

scattering results from aggregates comprised of 6-branch bullet rosette crystals were compared 149	

with those obtained from spherical or spheroidal ice-air mixed phase particles. Shown in Fig.1 is 150	

an example of these results, in which backscattering (left) and extinction (right) coefficients at 151	

35.6 GHz are plotted versus the equivalent ice diameter for 3 simulated snow aggregates and 152	

results from the sphere, oblate and prolate spheroids.  A constant effective snow density of 0.2 153	

g/cm3 is assumed for all spherical and spheroidal particle models. The spheroids are assumed to 154	

be randomly oriented, i.e., their symmetry axes are uniformly distributed in three-dimensional 155	

space. The aspect ratios (γ) of the spheroids, defined as the ratio of polar to equatorial lengths, 156	

are taken to be either 0.5 or 2 to represent oblate and prolate spheroids respectively.  The results 157	

of the study show that the scattering properties of the aggregates are fairly well reproduced by an 158	

equivalent-mass spheroidal particle when a constant snow density is assumed.   159	

 160	

Agreement between the spheroidal/fixed density model and the aggregates suggests the validity 161	

of the simple model and its utility for computing look-up tables for the DPR. An effective snow 162	

density of 0.2 g/cm3 is best able to reproduce the scattering parameters of the bullet-rosette 163	

aggregates at the DPR frequencies. It is important to note that the effective mass density, as 164	

defined in this paper, is that mass density of a spheroidal particle whose associated scattering 165	

parameters provide the best match to those of the simulated aggregates with the same mass.  This 166	

definition is motivated by the desire to match the scattering properties of the spheroidal and 167	
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simulated aggregates and is distinct from the usual definition of snow density given by the ratio 168	

of the particle mass to the volume where the volume is taken to be that of a circumscribing 169	

sphere or spheroid. To distinguish our definition from others, the density we use for scattering 170	

computations is referred to as the effective snow density.  It is also important to note that the 171	

snow mass is preserved in both definitions; that is, the product of the mass density or effective 172	

mass density and the particle volume yields the same mass.    173	

 174	

Recently, Kuo et al. (2016) have developed a comprehensive scattering database, which is 175	

computed using the discrete dipole approximation (DDA) from a collection of realistic 176	

aggregates simulated from a 3-D growth model with mass vs. size and fractal properties that are 177	

consistent with field observations (Gravner and Griffeath 2009). Because of its limited range of 178	

particle size mentioned earlier, the scattering tables of snow aggregates in our study will be taken 179	

as a hybrid form that combines the scattering results from the Kuo et al. scattering database for 180	

small to moderate particle sizes and the results from the simple scattering models for large 181	

particles. Illustrated in Figs.2 and 3 are these scattering results at Ku- and Ka-bands from the 182	

Kuo et al. database along with the results from an oblate spheroidal model for particle diameters 183	

up to 6 mm.  The results from the simple models (red curves) are those obtained from the 184	

randomly-oriented oblate spheroids with an aspect ratio of 0.7 and a constant effective mass 185	

density of 0.2 g/cm3. The results of the scattering tables, which are denoted by the term “fitted” 186	

and shown by the black curves, represent the mean values of the data from the scattering 187	

database, where the mean is taken from all types of aggregates having the same mass, and the 188	

results from the 0.2 g/cm3 oblate spheroid model in the size range where the scattering database 189	

is unavailable.  The maximum liquid equivalent diameters of the current Kuo et al. database at 190	
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Ku- and Ka-bands are 3 and 2 mm, respectively. In other words, the scattering results from the 191	

simple models are employed in the tables for the size ranges from 3-6 mm at Ku-band and 2-6 192	

mm at Ka-band. The fairly good agreement of the scattering results in Figs. 2 and 3 between the 193	

simple model and the scattering database (with mean differences less than 10% for the 194	

backscattering and 7% for extinction cross sections) over the size range where the database is 195	

valid suggests the validity of the simple models for the smaller particle sizes.  As the scattering 196	

database is updated to cover larger particle sizes, the validity of the simple scattering model will 197	

be reassessed.      198	

 199	

2.2 Particle size/mass distribution model 200	

	201	

The three-parameter gamma distribution is one of the most common ways to mathematically 202	

describe hydrometeor size/mass distributions (Gorgucci et al. 2000 and 2002; Bringi et al. 2002). 203	

The form of the gamma distribution is expressed as 204	
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where Dm is the mass-weighted diameter of the particle, Nw is a scale factor, and µ is the shape 206	

factor where  207	
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To describe snow particle size and mass spectra, the PSD in (1) and (2) is given as a function of 209	

liquid equivalent or melted diameter D, which is also called particle melted-size distribution. Dm 210	

is the melted median mass diameter, defined by 211	

 212	



10	
	

𝐷! =
!!! ! !"!

!
!!!

! ! ! !"
.                                                              (3) 213	

 214	

In the inner swath, the DPR provides Ku- and Ka-band reflectivity factor measurements at each 215	

range gate so only two parameters of the PSD can be determined. Typically, the shape factor (µ) 216	

is taken to be constant. Although µ is often set to zero (exponential distribution) (Gunn and 217	

Marshall 1958; Seto et al. 2013), the impact of this choice on the retrieval needs to be 218	

investigated.  219	

 220	

The differential frequency ratio (DFR), which is defined as the difference between the radar 221	

reflectivity factors at Ku- and Ka-bands in decibels, is perhaps the most important quantity for 222	

the dual-wavelength radar techniques in estimating hydrometeor micro/macro-physical 223	

properties. As the DFR is independent of Nw, Dm can be derived from the DFR relations once µ 224	

has been fixed. However, the DFR-Dm relation depends not only on µ but on the particle shape, 225	

orientation distribution and mass density.  Fig.4 provides the results of DFR as a function of the 226	

liquid equivalent median mass diameter using a randomly-oriented, fixed density spheroidal 227	

particle model.  The left plot shows the variations in the DFR-Dm relation resulting from 228	

different effective snow densities.  Computations of the radar scattering parameters at different 229	

effective snow densities are made in the same way as in the case of 0.2 g/cm3. The particle sizes 230	

(semi axes of spheroid) are solely determined by the density specified for a given particle mass. 231	

The center plot shows the effects of particle shape where a γ value of 1 corresponds to a sphere 232	

while γ values less than 1 correspond to an oblate spheroid.  The plot on the right shows the 233	

effect of changing µ. Analysis of these results indicates that particle shape has a small effect on 234	
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the DFR-Dm relation and changes the results by less than 4% for changes in γ from 0.5 to 1 while 235	

the shape factor leads to the change in the results of no more than 20%. On the other hand, the 236	

DFR-Dm relation has a strong dependence on the effective snow density. In other words, the 237	

determination of Dm from the DFR is relatively insensitive to µ and to particle shape, if the 238	

orientation is random, whereas the relationship is quite sensitive to the effective snow density 239	

used for computations of the scattering parameters. As can be seen in Figs.1-3, the extinction 240	

coefficients at both Ku- and Ka-bands, though in good agreement between the simple model and 241	

the scattering database, are small and can usually be neglected.  It should be noted that the above 242	

conclusions are based on the assumption of random orientation of the aggregates.  When this 243	

assumption is violated, then the orientation distribution as well as particle shape become 244	

important.  245	

 246	

Although an effective snow density of 0.2 g/cm3 is found to be suitable for the computations of 247	

the Ku- and Ka-band radar scattering parameters for equivalent ice diameters up to 2-3 mm,  248	

further testing will be necessary to assess this assumption when scattering results from larger 249	

aggregates become available.  It is worth noting that the results of Liao et al. (2013) show 250	

reasonably good agreement between radar scattering parameters at higher frequencies (from 89-251	

183.31 GHz) as derived from the simple models and the simulated aggregates for particle 252	

diameters up to 2.5 mm despite the fact that the simple models using spheres or nearly spherical 253	

particles produce backscattering results with more pronounced oscillations (resonance effects) 254	

than the aggregate results.	This is encouraging in the sense that it shows that an effective density 255	

of 0.2 g/cm3 yields good agreement with the simulated aggregate results for electrically larger 256	

particles.  On the other hand, it might be the case that the effective snow density may need to be 257	
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changed for larger particle types so as to ensure good agreement.  In either case, the objective is 258	

to provide scattering tables at all relevant frequencies and particle sizes that incorporate the most 259	

recent scattering results.   260	

 261	

2.3 Dual-wavelength retrieval algorithm  262	

	263	

As discussed above, Dm can be derived from the DFR-Dm relations for a given µ. In principle, 264	

once Dm is determined, Nw is derived using the radar reflectivity at either Ku- or Ka-band. 265	

Subsequently, snow water content (SWC) and equivalent snowfall rate (RS) can be computed 266	

from the derived PSD parameters. The fall velocity of snow is needed in order to estimate RS. 267	

For the development of an effective dual-wavelength radar retrieval technique, it is desirable to 268	

employ look-up tables (LUT) that are formed in such a way that the radar measurements are 269	

directly linked to the microphysical properties of snow (Dm and Nw) and its associated bulk 270	

parameters (SWC and RS). With use of the LUTs different particle models and their scattering 271	

properties can be evaluated separately in the context of the same algorithm.  272	

 273	

Illustrated in Fig.5 are such tables in which SWC (top-left), RS (top-right), Dm (bottom-left) and 274	

Nw (bottom-right) along the ordinate are given as a function of the DFR.  A flowchart is provided 275	

in Fig.6 showing the procedures to compute the radar reflectivitity factors and snow size and 276	

bulk hydrometeor parameters from an assumed mass spectrum model.  In Fig.5, SWC, RS, Nw 277	

have been normalized by the Ku-band radar reflectivity factor so that they can be expressed 278	

solely as a function of DFR for given PSD and scattering models.  The way to normalize liquid 279	

water content by reflectitities has previously been adopted in the study of ice clouds (Hogan et 280	
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al. 2000; Botta et al. 2013). The results in Fig.5 are computed under the assumption that the 281	

snow particles are fixed-density, randomly-oriented oblate spheroids with an aspect ratio of 0.7 282	

that follow an exponential particle size distribution. As an example, and also for reference, the 283	

tables are plotted in Fig.5 for effective snow densities varying from 0.05 to 0.5 g/cm3. The 284	

terminal velocities of snowflakes used for the computations of RS are based on the results of 285	

Magono and Nakamura (1965). It is important to note that the results from the LUTs shown in 286	

Fig.5 can be used to determine SWC and RS as they directly link the DPR radar reflectivities to 287	

SWC and RS without use of the derived PSD parameters.  288	

 289	

The procedure for the estimation of snow parameters is described as follows: given a pair of 290	

reflectivity factors (ZKu, ZKa), the DFR in dB is defined as 10Log10(ZKu/ZKa), from which we find 291	

the values of SWC/ZKu (left) and RS/ZKu (right) for an assumed effective snow density. By 292	

multiplying by ZKu, the results of SWC and RS are then obtained. Obviously the values of SWC 293	

and RS depend on the effective snow density.  The estimates of Dm and Nw can be achieved in a 294	

similar way. It is worth mentioning again that snow attenuations, though correctable, are 295	

typically negligibly small for most Ku- and Ka-band spaceborne radar measurements.  296	

 297	

As LUTs change with different scattering models and PSD parameterizations, a proper selection 298	

of the tables is critical to the accuracy of the retrieval. It is instructive to conduct a sensitivity 299	

study with respect to the model assumptions and to gain an understanding of the uncertainties 300	

associated with each of the models. Figure 7 provides such a sensitivity study in which the LUTs 301	

are checked against 3 µ values. Similar to the findings in Fig.4, a change in µ leads to changes in 302	

the estimates of SWC and RS of less than 20% so that the assumption of µ equal to zero, as found 303	
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in many observations, yields a reasonable approximation for the estimates of snow.  Although it 304	

is worth testing the scattering databases of the aggregates formed from various crystal habits, it is 305	

not the focus of the study to evaluate and validate these scattering databases. Because the mass 306	

of the aggregates is the dominant factor in the scattering parameters at Ku- and Ka-bands, 307	

significant differences among the various scattering databases are not expected.  This is 308	

evidenced by the fact of that there is good agreement between the scattering databases derived by 309	

Nowell et al. (2013) and Kuo et al. (2016) and that the small variations of the scattering and 310	

extinction coefficients as computed from various aggregate models (Kuo et al. 2016) can be seen 311	

from the variations in the data (blue) shown in Figs.2-3.  312	

 313	

3   Assessment of snow retrieval: PSD model assumptions 314	

	315	

Because of the complexity of snowfall processes and the difficulties encountered in accurately 316	

measuring the microphysical properties, validating snow estimates is a challenging task. With the 317	

advent of more advanced digital cameras and image processing technologies, measurements of 318	

falling snow have been improved to the point where the snow particle size spectra and fall 319	

velocities can be obtained fairly accurately (Bohm 1989; Huang et al. 2010 and 2015; Garrett et 320	

al. 2012). An independent and direct measurement of the mass of individual snow particles is, 321	

however, still a difficult task, and therefore direct measurements of the snow mass spectrum are 322	

rarely available. Several investigations into deriving snow mass spectra are being pursued, which 323	

are in fact part of the effort in the GPM ground validation project. These methods are based on 324	

the principle that particle masses can be related to their fall velocities after accounting for air 325	

drag and other aerodynamics effects (Bohm 1989; Heymsfield et al. 2010). Understanding the 326	

microphysical properties of snow should further improve our ability to generate better scattering 327	
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representations and more accurate look-up tables for retrieving snow bulk properties from the 328	

DPR.  It would be ideal to evaluate snow retrievals with co-located dual-wavelength radar 329	

measurements and in situ snow microphysical measurements. These data, though desirable, are 330	

not available. Our attention is therefore focused on the assessment of the PSD assumptions used 331	

in developing the retrieval algorithms using measured PSD. 332	

To check the consistency of snow retrievals using the LUTs, measurements of snow spectra are 333	

used.  The data were obtained from 8 snow events during winter of 2014 taken at the NASA 334	

Wallops Flight Facility in Wallops Island, Virginia using the Snow Video Imager/Particle Image 335	

Probe (SVI/PIP). Table 1 provides details of these events that include starting and ending times 336	

of snowfall, mean temperature as well as total accumulations of each event. In Wallops Island 337	

annual mean snowfall is about 200.66 mm, and in 2014 it was recorded to be 223.66 mm, 338	

slightly more than average.  Although the PIP measures the dimensions or sizes of the 339	

snowflakes and their fall velocities, it does not provide measurements of particle mass. In order 340	

to compute the radar reflectivities and snow bulk parameters as in (4) and (5), the mass spectra or 341	

melted size spectra are needed. Conversion of the PSD measurements to the mass spectra, 342	

however, relies on the empirical mass-size relations. There are many such relationships available 343	

in the literature that can be used to derive m(D) (Nakaya 1954; Magono and Nakamura 1965; 344	

Zikmunda and Vali 1972; Locatelli and Hobbs 1974; Mitchell et al. 1990; Brandes et al. 2007; 345	

Heymsfield et al. 2010). These results show some variability depending on snow type, amount of 346	

riming and other conditions under which the measurements were made. In this study, two well-347	

known mass-size relations, the results from Heymsfield et al. (2010) and Brandes et al. (2007), 348	

are used to test how the estimates of snow change with use of different mass-size relations when 349	

the same LUTs are used. 350	
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 351	

An example of the PSD measurements is shown in Fig.8, in which N(D) of the PSD (top), shown 352	

along the vertical with the amplitude of the spectrum given by the color scale, is given as a 353	

function of time. The equivalent snowfall rate (middle) and median mass diameter (Dm) (bottom) 354	

are also shown for the same time period. For the computations of snowfall rate and Dm, empirical 355	

snow mass-size relations are used in conjunction with the measured snow particle size spectra 356	

and fall velocities. The following equations are used for obtaining RS and Dm: 357	

𝐷!!
! !(!)! ! !"!

!
!(!)! ! !"!

!
	,																																																																					(4) 358	

𝑅! =
!"×!"!!

!!
𝑁(𝐷)!!"#

!!"#
𝑚(𝐷)𝑉(𝐷)𝑑𝐷,                                         (5)	359	

where D and Dm in (4) and (5) as well as in Fig.8 are, respectively, the actual particle diameter 360	

and median mass diameter rather than the melted sizes employed in the rest of the paper.  m(D) 361	

is the particle mass-size relation, and ρw is the water mass density taken to be 1 g/cm3. Note also 362	

that the data shown in Fig. 8 represent a measurement period of 1000 minutes of snow data 363	

(~three snow events) with a one-minute integration time. The mass-size relation of Heymsfield et 364	

al. (2010) is used for computations of RS and Dm.  365	

 366	

Illustrated in Fig.9 are the scatter plots (red dots) of SWC (top row) and RS (bottom row) 367	

computed from the measured PSD with use of mass-size relations when the hybrid scattering 368	

tables are assumed. For reference, the LUTs derived from the constant effective density 369	

scattering models as shown in Fig.6 are superimposed in Fig.9. The SWC and RS as well as the 370	

quantities associated with the Ku- and Ka-band radar reflectivities shown in Fig.9 are obtained 371	

from a total of about 8000 1-minute PSD measurements collected from the PIP during the winter 372	
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of 2014 at Wallops using the mass-size relations of Brandes et al. (left column) and Heymsfield 373	

et al. (right column). Mass-size relations are used to convert the measured particle size 374	

distribution (PSD) to the melted size distribution from which the scatterings and snow bulk 375	

parameters can be computed as in (2)-(5).  The mass-size relations used in Fig.9 are those from 376	

Eq.(8) of Brandes et al. (2007) and Eq.(10) of Heymsfield et al. (2010).  The procedures used in 377	

obtaining the radar parameters and SWC and RS from the measured PSD are shown in the flow 378	

diagram of Fig.10. Analysis of the SWC results indicates that the snow water content derived 379	

from the measured PSD agree reasonably well with those from the tables when the effective 380	

snow density is taken to be 0.2 g/cm3. Because the scattering table, which is a hybrid formed 381	

from the mean aggregate solution at small particle sizes with the spheroidal particle model at 382	

larger sizes, used for computing the reflectivities of the measured PSD and the scattering results 383	

with a density of 0.2 g/cm3 are nearly the same as shown in Figs.2-3, the differences in snow 384	

water content between the measured PSD and the table results from a density of 0.2 g/cm3 are 385	

mostly caused by the differences between measured and modeled melted particle size 386	

distributions. As noted earlier, the exponential melted-size distribution is assumed in the look-up 387	

tables while the measured melted-size distribution is derived from the measured particle diameter 388	

spectrum and the mass-size relation that generally will be different from an exponential 389	

distribution. Computation of the snowfall rate, on the other hand, depends not only on the 390	

particle mass (or melted-size) spectrum but also on the particle fall velocities. Most of the 391	

estimated snowfall rates, as derived from the measured PSD and the mass-size relations, and 392	

shown in the lower panels of Fig.9, lie between the table results with effective densities of 0.1 393	

and 0.2 g/cm3. The mean differences of the SWC between the 0.2 g/cm3 snow density LUTs and 394	

the PSD-derived results are about 20% for Ku-band radar reflectivities greater than 15 dBZ (the 395	
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approximate minimum detectable signal of the DPR Ku-band channel). Larger differences 396	

between the RS estimates are found, and can be attributed to differences in the snow fall velocity 397	

spectra between the measured and modeled mass distribution. The terminal velocities of 398	

snowflakes used for the computations of the LUTs are based on the results of Magono and 399	

Nakamura (1965) while the measured fall velocities are used for the computations of PSD 400	

snowfall rate.   401	

 402	

The overall agreement of the snow water content between the results from the measured PSD 403	

and the results from the LUTs suggests that the exponential particle distribution model assumed 404	

in the tables is reasonable. Different mass-size relations lead to different mass spectra for a given 405	

measured PSD. That the retrieval results from the Brandes et al. and Heymsfield et al. mass-size 406	

relations follow the trends of SWC and RS similar to those derived from the LUTs further 407	

suggest that the Ku- and Ka-band dual-wavelength techniques adopted are relatively insensitive 408	

to the choice of either the Brandes or the Heymsfield mass-size relation. These results 409	

approximately yield the table values obtained from the 0.2 g/cm3 snow density. It is also worth 410	

mentioning that the results from the measured PSD are relatively insensitive to PSD integration time even 411	

though the scatter in the data is slightly reduced if a longer integration is used. 412	

 413	

4   Summary 414	

 415	

The ultimate goal of this study is to better understand the estimation process in retrieving snow 416	

microphysical properties (Nw and Dm) and the associated bulk parameters (SWC and RS) for 417	

improvement of the Ku- and Ka-band dual frequency radar retrieval. This is done by first finding 418	

suitable single scattering tables and PSD models and then using this information to construct 419	
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snow retrieval look-up tables.  Presently available scattering databases, though accurate and 420	

useful, are limited to small and moderate particle sizes. To extend the results to larger sizes, a 421	

simple scattering model that agrees well with the scattering databases at small particle sizes is 422	

used. It is found that a snow particle model consisting of randomly oriented oblate spheroids 423	

with an effective mass density of 0.2 g/cm3 yields good agreement with the results from the 424	

scattering databases at Ku- and Ka-band.  Thus the single-particle scattering database is a hybrid 425	

that uses the scattering database for small and moderate particles and a simple randomly oriented 426	

oblate with a constant effective mass density of 0.2 g/cm3 for large particles.  427	

 428	

Using single scattering tables and an assumed PSD model, the Ku- and Ka-band radar 429	

reflectivity factors and snow bulk parameters are computed. Thus, the relationships between the 430	

results of DFR and SWC and RS are established to form the dual-wavelength radar retrieval look-431	

up tables. Retrievals of snow water content and snowfall rate, as the primary focus of this study, 432	

are therefore achieved by using newly introduced look-up tables that directly link Ku- and Ka-433	

band radar reflectivities to hydrometeor parameters without the use of derived PSD parameters. 434	

The look-up tables are formed so that SWC and RS, both of which are normalized by the Ku-435	

band radar reflectivity factor, are expressed as a function of the differential frequency ratio of 436	

Ku- and Ka-bands. The look-up tables offer not only computational advantages but provide 437	

direct insight into how the model assumptions impact the retrieval results. The nature of one-to-438	

one relations between the normalized hydrometeor parameters and DFR provides a means to 439	

obtain unique solutions of the snow parameters for a given PSD and single scattering model. To 440	

understand the uncertainties in the snow estimates associated with the PSD parameterizations 441	

and scattering models, a sensitivity study was done, finding that the choice of shape factor of the 442	
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gamma PSD has only a slight impact on the retrievals. As such, a value of µ of zero, as 443	

supported by some observations, should yield reasonable estimates of snow parameters from the 444	

perspective of dual-wavelength radar retrieval.  445	

 446	

Self-consistency of the snow retrievals has been checked using measurements of snow PSD and 447	

fall velocity acquired from the PIP during the winter of 2014 in Wallops. Among several 448	

assumptions that have been examined are conversions to particle mass spectra using different 449	

mass-size relations, scattering particle models and snow PSD. Analysis of nearly 8000 1-minute 450	

PSD measurements suggests that exponential PSD model (µ=0) is sufficiently accurate for the 451	

dual-wavelength radar retrieval of snow bulk parameters. It also indicates that the use of either 452	

the Heymsfield or the Brandes mass-size relation yields approximately the same snow estimates. 453	

However, these findings should be viewed as preliminary because of the limited data 454	

measurements at a single location.  Collections of long-term PSD data, fall velocities and 455	

information on particle mass spectra at multiple sites will provide further evaluation of the 456	

performance of the Ku- and Ka-band radar techniques.  Further tests of the scattering tables will 457	

be done by comparing the accuracy of the simple particle model against scattering results from 458	

larger simulated aggregates, as these results become available.   459	

 460	
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Appendix 467	

List of Symbols and Acronyms 468	

 GPM: Global Precipitation Measurement 469	
 DPR:  Dual-frequency Precipitation Radar 470	
 NASA: National Aeronautics and Space Administration 471	
 JAXA: Japan Aerospace Exploration Agency 472	
 Ku-band: Frequency of 13.6 GHz 473	
 Ka-band: Frequency of 35.6 GHz 474	
 PSD: Particle Size Distribution  475	
 SVI/PIP: Snow Video Imager/Particle Image Probe 476	
 DDA: Discrete Dipole Approximation 477	
 N(D): Particle Size Distribution 478	
 NW: Scale Factor of Particle Size Distribution 479	
 µ: Shape Factor of Gamma Distribution 480	
 D: Particle Diameter 481	
 Dm: Mass-weighted Diameter 482	
	 Λ: Slope Parameter 483	
 DFR: Differential Frequency Ratio 484	
 SWC: Snow Water Content 485	
 RS: Equivalent Snowfall Rate 486	
 LUT: Look-up Table 487	
 ZKu: Ku-band Radar Reflectivity Factor 488	
 ZKa: Ka-band Radar Reflectivity Factor 489	
 m(D): Particle Mass as Function of Particle Diameter 490	
 V(D): Particle Fall Velocity 491	
 ρw: Liquid Mass Density 492	
 ρs: Snow Mass Density 493	
 Dmin: Minimum Diameter 494	
 Dmax: Maximum Diameter 495	
 f: Frequency 496	
 γ: Aspect Ratio of Particle 497	
 498	

	 	499	
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Table 1 Snow events during winter of 2014 in Wallops Island, Virginia 639	

 640	

Events Start Time 
(UTC) 

End Time 
(UTC) 

Accumulation 
(mm) 

Mean 
Temperature (0C) 

1 JAN0305:09 JAN03 11:30 46.41 -1.4 
2 JAN21 22:05 JAN22 10:03 5.52 -5.4 
3 JAN28 20:41 JAN29 12:40 62.12 -9.5 
4 FEB14 01:58 FEB14 05:12 6.37 1.9 
5 FEB15 20:41 FEB15 23:23 0.76 2.2 
6 MAR03 14:40 MAR03 22:00 34.15 -4.4 
7 MAR17 08:04 MAR17 20:53 20.93 0.8 
8 MAR25 18:50 MAR26 06:13 47.40 1.0 

641	
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Figure captions: 642	

Fig.1  Comparisons of backscattering (left) and extinction (right) coefficients of 3 snow 643	
aggregates with the results from the sphere, oblate and prolate spheroids at a frequency of 35.6 644	
GHz in terms of equivalent ice diameter. A constant snow density of 0.2 g/cm3 is assumed for all 645	
spherical and spheroidal particle models. The oblate and prolate spheroids are randomly oriented 646	
with aspect ratios (γ) of 0.5 and 2, respectively. 647	

Fig.2  Backscattering (left) and extinction (right) coefficients from the scattering database (blue 648	
dots), simple scattering model (red curves), which is the randomly-oriented oblate spheroid with 649	
a constant effective density of 0.2 g/cm3 and an aspect ratio of 0.7, and scattering-database-650	
simple-model-combined results (black curves), also referred to as “fitted”, at Ku band. The mean 651	
values of the scattering results are used for the combined results over the data range. 652	

Fig.3  Backscattering (left) and extinction (right) coefficients from the scattering database (blue 653	
dots), simple scattering model (red curves), which is the randomly-oriented oblate spheroid with 654	
a constant effective density of 0.2 g/cm3 and an aspect ratio of 0.7, and scattering-database-655	
simple-model-combined results (black curves), also referred to as “fitted”, at Ka band. The mean 656	
values of the scattering results are used for the combined results over the data range. 657	

Fig.4  The differential frequency ratio (DFR=10LOG10(ZKu/ZKa)) as a function of equivalent-658	
liquid median mass diameter Dm. (Left): DFR-Dm relations are plotted with several effective 659	
snow densities (ρs) from 0.1 to 0.4 g/cm3 as the shape factor (µ) of the gamma PSD is set to zero 660	
and the aspect ratio (γ) of the oblate spheroid particles is set to 0.7.  (Middle): DFR-Dm relations 661	
are plotted with the aspect ratios of 0.5, 0.7 and 1 at ρs=0.2 g/cm3 and µ=0. (Right): DFR-Dm 662	
relations are plotted with the values of µ of 0, 3 and 6 at ρs=0.2 g/cm3 and γ=0.7.   663	

Fig.5  The retrieval look-up tables that show the snow water content (SWC) (top-left) and 664	
equivalent snowfall rate (RS) (top-right), both of which are normalized by the Ku-band radar 665	
reflectivity factor (ZKu), as a function of the DFR, defined by 10LOG10(ZKu/ZKa), for several 666	
effective snow densities (ρs) with the values from 0.05 to 0.5 g/cm3. The liquid equivalent 667	
median mass diameter Dm (bottom-left) and the PSD scale parameter Nw normalized by ZKu 668	
(bottom-right) are also plotted in terms of DFR.  669	

Fig.6  Flowchart of computing radar parameters and snow size and bulk properties. 670	

Fig.7  The look-up tables used for the retrieval of SWC (left) and RS (right) with µ of 0, 3 and 6, 671	
respectively, as computed from the single scattering tables depicted in Figs.2-3. 672	

Fig.8  Example of a segment of the PSD measurements (1000 minutes) in time series taken from 673	
8 snow events during winter of 2014 at the NASA Wallops Flight Facility using the SVI/PIP. 674	
The particle size spectra (mm-1 m-3), shown in the color scale, are given in the top panel while 675	
equivalent snow fall rate and actual median mass diameter are displayed in the middle and 676	
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bottom panels, respectively. The PSD data, obtained by averaging the measurements over 1-677	
minute integration time, are merged from all the snow events into one data file with consecutive 678	
time. 679	

Fig.9  The snow water content (SWC) (top row) and equivalent snowfall rate (RS) (bottom row), 680	
both of which are normalized by the Ku-band radar reflectivity factor (ZKu), as a function of the 681	
DFR, defined by 10LOG10(ZKu/ZKa), for several effective snow densities (ρs) with the values 682	
from 0.05 to 0.5 g/cm3. The scatter plots (red dots) are the results derived from the measured 683	
PSD that were collected by the SVP/PIP from 8 snow events in the winter of 2014 at the NASA 684	
Wallops Flight Facility. Two empirical density-size relationships reported by Brandes et al. 685	
(2007) and Heymsfield et al. (2010) are used in converting the measured PSD to the snow mass 686	
spectra, and the results from their respective relations are shown in the left and right panels. 687	

Fig.10  Flowchart detailing the procedures of obtaining radar reflectivities and snow parameters. 688	
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 723	

 724	

 725	

Fig.5  The retrieval look-up tables that show the snow water content (SWC) (top-left) and 726	
equivalent snowfall rate (RS) (top-right), both of which are normalized by the Ku-band radar 727	
reflectivity factor (ZKu), as a function of the DFR, defined by 10LOG10(ZKu/ZKa), for several 728	
effective snow densities (ρs) with the values from 0.05 to 0.5 g/cm3. The liquid equivalent 729	
median mass diameter Dm (bottom-left) and the PSD scale parameter Nw normalized by ZKu 730	
(bottom-right) are also plotted in terms of DFR.  731	

732	
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 734	

Fig.6  Flowchart of computing radar parameters and snow size and bulk properties.  735	
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 745	

 746	

Fig.7  The look-up tables used for the retrieval of SWC (left) and RS (right) with µ of 0, 3 and 6, 747	
respectively, as computed from the single scattering tables depicted in Figs.2-3. 748	

  749	
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 750	

Fig.8  Example of a segment of the PSD data, obtained by averaging the measurements over 1-751	
minute integration time,  in time series taken from 8 snow events during winter of 2014 at the 752	
NASA Wallops Flight Facility using the SVI/PIP. The particle size spectra (mm-1 m-3), shown in 753	
the color scale, are given in the top panel while equivalent snow fall rate and actual median mass 754	
diameter are displayed in the middle and bottom panels, respectively. The dates provided in the 755	
top panel correspond to the snow events displayed.  756	

 757	



38	
	

 758	

Fig.9  The snow water content (SWC) (top row) and equivalent snowfall rate (RS) (bottom row), 759	
both of which are normalized by the Ku-band radar reflectivity factor (ZKu), as a function of the 760	
DFR, defined by 10LOG10(ZKu/ZKa), for several effective snow densities (ρs) with the values 761	
from 0.05 to 0.5 g/cm3. The scatter plots (red dots) are the results derived from the measured 762	
PSD that were collected by the SVP/PIP from 8 snow events in the winter of 2014 at the NASA 763	
Wallops Flight Facility. Two empirical density-size relationships reported by Brandes et al. 764	
(2007) and Heymsfield et al. (2010) are used in converting the measured PSD to the snow mass 765	
spectra, and the results from their respective relations are shown in the left and right panels. 766	
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 768	

 769	

Fig.10  Flowchart detailing the procedures of obtaining radar reflectivities and snow parameters. 770	

 771	


